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Physical Security

Cryptographic algorithm security

Classical security Physical security

Algorithm: abstract mathematical
object (black box)

Algorithm: program running on given
device (gray box)

Only inputs and outputs are available. Implementation-specific characteris-
tics might leak information.

⇝ Classical cryptanalysis ⇝ Side-channel cryptanalysis

An attacker may have access to the device (e.g. smart card).
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Side-Channels of a Smart-Card

3

SE
C
RY
PT

20
18

In
tro
du
ct
io
n



Side-Channel Attacks

Simple side-channel attack: exploit information from the leakage of one
execution.
Differential side-channel attack: exploit correlations between secret values and
intermediate results.
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Countermeasure

Principle of masking

Randomize a variable with a random mask
Keep the intermediate data masked all along the algorithm
Unmask the result at the end.

Boolean masking example
Compute y = F(x):

r← Random() // mask generation
x̃← x⊕ r // masking
ỹ← F(x̃)
s← F′(r) // mask correction
y← ỹ⊕ s // unmasking

Mask changes at each execution⇒ no correlations between traces.
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Profiling

More powerful setting: the attacker can “play” with an under control version of the
same device, before attacking the target.

Drawback: each “point” to attack must be profiled, requires many curves⇝ costly.

Question
How to use as few points as possible ?
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Outline

1 Algebraic Side-Channel Attacks

2 Algebraic Modeling of Masked AES

3 Experimental Results

4 Conclusion
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Algebraic Side-Channel Attacks

Introduced by Renauld, Standaert [INSCRYPT 2009]
Principle: model the algorithm, take leakages on intermediate values and feed an
automated solver for algebraic systems.

+ semi-automatic, can achieve attack with fewer leakages.
- Leakages recovery usually requires a profiling stage or not (independent).
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Algebraic Side-Channel Attacks

m0 = 0x01234567

c0 = 0x8B3C01DE

.

.

.

mk = 0xA1B2C3D4

ck = 0x7D09A226

key = ??????????

HW(A0) = 4 . . .

x0 + x1 x2 + x1 x4 = 0

x0 x1 x4 + x3 x4 + x2 = 0

.

.

.

x0 x2 x3 + x0 x2 + x1 x2 = 0

x1 + 1 = 0

x4 + x1 + 1 = 0

x2 + x3 + 1 = 0

x2 x1 + x1 = 0

x0 = 0,. . ., xn = 1

.

.

.

x0 = 1,. . . , xn = 1
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State of the Art

Algebraic Side-Channel Attacks

Foundations
Renauld, Standaert [INSCRYPT 2009]
Renauld, Standaert, Veyrat-Charvillon [CHES 2009]

Improvements
Oren, Kirschbaum, Popp, Wool [CHES 2010]

Error handling
Zhao, Wang, Guo, Zhang, Shi, Liu, Wu [CASC 2011]
Oren, Renauld, Standaert, Wool [CHES 2012]

Observations
Few details/study on masked implementations
Advance in Machine Learning (ML): more accurate leakages

⇝ no error handling
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Contributions

Work on state-of-the-art embedded code: masked!
Consider exact leakages given by profiling step
Try to minimize number of leakages to minimize profiling
Apply ASCA to different masking schemes.
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The AES block cipher

plaintext key

⊕

AddRoundKey

S S S S S S S S S S S S S S S S

SubBytes

S S S S

Rconr

⊕
⊕

⊕
⊕

⊕

ShiftRows

Mixr ̸=10 Mixr ̸=10 Mixr ̸=10 Mixr ̸=10

MixColumns

⊕

AddRoundKey

r=
1
,.
..
,1
0

r=
1
,.
..
,1
0

ciphertext
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Algebraic Modeling of AES

Number of variables
One bit⇔ one variable

128 variables for key bits, 128 variables for input bits
(10 ×128) variables for intermediate states (128 per inner round)
(10 ×128) variables for subkeys (128 per inner rounds)
128 variables for output bits

Equations

SBox: each output bit as function of 8 input bits

⇝ total degree = 8

Linear parts: Lin. combination of SBoxes’ output bit

⇝ no increase in degree

Only one equation for each new state/subkey bit

Total: 2688 equations of degree at most 8, in 2944 variables.
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Attack context

Target of evaluation

component: 8-bit micro-controller
leakage: Hamming weight (HW) of manipulated values
noise: not considered (perfect leakage)
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Algebraic Modeling of Hamming Weight leakages

General Principle
HW

(∑n−1
i=0 bi 2

i
)
= w⇔ exactly w bits among the bi’s are 1.

Equations

At most w bits are 1⇔ all products of w+ 1 bits are 0:∏
i∈S1

xi = 0 , . . . ,
∏
i∈Sk

xi = 0 ,

for each w + 1 elements subset S1, . . . ,Sk of {0, . . . , n− 1}.

At least w bits are 1⇔ sum of all products of w bits is positive:
ℓ∑
j=1

∏
i∈Sj

xi ⩾ 1 ,

for all w elements subsets Sj of {0, . . . , n− 1}.

Total: at most 71 equations of degree at most 8.
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Leakages Location
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Algebraic Modeling of Masked AES

Masking against DSCA
Linear parts: easily propagates with boolean masking
Non-linear parts: specific algorithmic required
Masked SBox recomputation (in RAM)
Operations on smaller field (GF(16))

Impact on modeling

1 bytemask: same for each state byte + temporary mask

⇝ 16 extra variables.

16 bytesmask: full state mask

⇝ 128 extra variables.
Possible extra equations for non-linear parts
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Framework/Setting

Algebraic equations (ANF) generated using Magma computer algebra system
Equations converted into SATisfiability problem instance (CNF)
CNF solved using CryptoMiniSAT SAT-solver
Leakages are simulated within the framework
Timeout on solving (4 hours)
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Experimental Results Summary

Table: Best results for each setting (one known plaintext/ciphertext pair)

Rnds nb. Leakages Success Rate

KeySchedule 1-5 64 100%

Plain 1 48 100%

Partial 4-5 96 100%

1Mask
1 48 12.5%
1 84 87.5%

16Mask - - 0%
1MaskGF16 1 64 100%

16MaskGF16
1 128 12.5%
1-2 320 100%

Success rate can be increased with many plaintext/ciphertext pairs.
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Conclusion

Results Analysis

Key scheduling should be protected
Partial masking: vulnerable
1 byte only mask: vulnerable
GF(16): SBox computation leaks a lot of information
16 bytes mask: depend on implementation
Security against classical DSCA⇏ security against ASCA

Results conditioned by quality of leakages.
Masked implementations in inaccurate leakages context ?
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Questions?

Join us on

www.idemia.com
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